题目内容
设
为实数,函数![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021848802936.png)
(Ⅰ)求
的单调区间与极值;
(Ⅱ)求证:当
且
时,![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021848865691.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021848771283.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021848802936.png)
(Ⅰ)求
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021848818447.png)
(Ⅱ)求证:当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021848834536.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021848849393.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021848865691.png)
(Ⅰ)
的单调递减区间是
,单调递增区间是
,极小值为
;(Ⅱ) 见解析.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021848818447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021848912618.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021848927621.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021848958773.png)
试题分析:(Ⅰ)直接根据导数和零的大小关系求得单调区间,并由单调性求得极值;(Ⅱ)先由导数判断出
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021848974442.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021848990641.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021849005615.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021849021491.png)
试题解析:(1)解:由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021849036925.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021849052819.png)
令
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021849068535.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021849083456.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021849099266.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021849114524.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021849130491.png)
![]() | ![]() | ![]() | ![]() |
![]() | ![]() | 0 | + |
![]() | 单调递减 | ![]() | 单调递增 |
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021848818447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021848912618.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021848927621.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021848818447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021849083456.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021848958773.png)
(2)证明:设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240218494111017.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021849426940.png)
由(1)知,对任意
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021849442424.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021849458557.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021848974442.png)
于是,当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021848834536.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021848990641.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021849005615.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021849021491.png)
从而对任意
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021848990641.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021849598539.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021849614785.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021848865691.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目
题目内容
![]() | ![]() | ![]() | ![]() |
![]() | ![]() | 0 | + |
![]() | 单调递减 | ![]() | 单调递增 |