ÌâÄ¿ÄÚÈÝ
7£®Èçͼ£¬ÓÉÈô¸ÉÔ²µã×é³ÉÈçÈý½ÇÐεÄͼÐΣ¬Ã¿Ìõ±ß£¨°üÀ¨Á½¸ö¶Ëµã£©ÓÐn£¨n£¾1£¬n¡ÊN£©¸öµã£¬Ã¿¸öͼÐÎ×ܵĵãÊý¼ÇΪan£¬Ôò$\frac{9}{{{a_2}{a_3}}}+\frac{9}{{{a_3}{a_4}}}+\frac{9}{{{a_4}{a_5}}}+¡+\frac{9}{{{a_{2014}}{a_{2015}}}}$=£¨¡¡¡¡£©A£® | $\frac{2014}{2015}$ | B£® | $\frac{2013}{2014}$ | C£® | $\frac{3}{2015}$ | D£® | $\frac{9}{2015}$ |
·ÖÎö ¸ù¾ÝͼÏóµÄ¹æÂɿɵóöͨÏʽan£¬¸ù¾ÝÊýÁÐ{$\frac{9}{{a}_{n}{a}_{n+1}}$}µÄÌصã¿ÉÓÃÁÐÏî·¨Çó³ö$\frac{9}{{a}_{2}{a}_{3}}+\frac{9}{{a}_{3}{a}_{4}}+\frac{9}{{a}_{4}{a}_{5}}+¡+\frac{9}{{a}_{n}{a}_{n+1}}$=$\frac{n-1}{n}$£¬½«n=2014´úÈë¿ÉµÃ´ð°¸£®
½â´ð ½â£ºÃ¿¸ö±ßÓÐn¸öµã£¬°Ñÿ¸ö±ßµÄµãÊýÏà¼ÓµÃ3n£¬ÕâÑù½ÇÉϵĵãÊý±»Öظ´¼ÆËãÁËÒ»´Î£¬
¹ÊµÚn¸öͼÐεĵãÊýΪ3n-3£¬¼´an=3n-3£¬
ÁîSn=$\frac{9}{{a}_{2}{a}_{3}}+\frac{9}{{a}_{3}{a}_{4}}+\frac{9}{{a}_{4}{a}_{5}}+¡+\frac{9}{{a}_{n}{a}_{n+1}}$=$\frac{1}{1¡Á2}$+$\frac{1}{2¡Á3}$+¡+$\frac{1}{£¨n-1£©n}$=1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+¡+$\frac{1}{n-1}$-$\frac{1}{n}$=1-$\frac{1}{n}$=$\frac{n-1}{n}$£¬
¡à$\frac{9}{{{a_2}{a_3}}}+\frac{9}{{{a_3}{a_4}}}+\frac{9}{{{a_4}{a_5}}}+¡+\frac{9}{{{a_{2014}}{a_{2015}}}}$=$\frac{2013}{2014}$£¬
¹ÊÑ¡£ºB
µãÆÀ ±¾ÌâÖ÷Òª¿¼²éµÈ²îÊýÁеÄͨÏʽºÍÇóºÍÎÊÌ⣮Êô»ù´¡Ì⣮
¢Ù-2ÊǺ¯Êýy=f£¨x£©µÄ¼«Öµµã£»
¢Ú1ÊǺ¯Êýy=f£¨x£©µÄ×îСֵµã£»
¢Ûy=f£¨x£©ÔÚx=0´¦ÇÐÏßµÄбÂÊСÓÚÁ㣻
¢Üy=f£¨x£©=ÔÚÇø¼ä£¨-2£¬2£©Éϵ¥µ÷µÝÔö£®
ÔòÕýÈ·ÃüÌâµÄÐòºÅÊÇ£¨¡¡¡¡£©
A£® | ¢Ù¢Ü | B£® | ¢Ú¢Ü | C£® | ¢Û¢Ü | D£® | ¢Ú¢Û |
A£® | S£¼8£¿ | B£® | S£¼12£¿ | C£® | S£¼14£¿ | D£® | S£¼16£¿ |
A£® | 2i | B£® | i | C£® | -2i | D£® | -i |