题目内容
【题目】已知函数g(x)= (a∈R),f(x)=ln(x+1)+g(x).
(1)若函数g(x)过点(1,1),求函数f(x)的图象在x=0处的切线方程;
(2)判断函数f(x)的单调性.
【答案】(1) y=3x;(2)见解析.
【解析】试题分析:(1)代入点(1,1),求得a=2,求出f(x)的导数,求得切线的斜率和切点,即可得到切线方程;
(2)求出f(x)的导数,对a讨论,当a≥0时,当a<0时,令导数大于0,得增区间,令导数小于0,得减区间.
试题解析:
(1)因为函数g(x)过点(1,1),所以1=,解得a=2,所以f(x)=ln(x+1)+.由f′(x)=+=,则f′(0)=3,所以所求的切线的斜率为3.又f(0)=0,所以切点为(0,0),故所求的切线方程为y=3x.
(2)因为f(x)=ln(x+1)+ (x>-1),
所以f′(x)=+=.
①当a≥0时,因为x>-1,所以f′(x)>0,
故f(x)在(-1,+∞)上单调递增;
②当a<0时,由得-1<x<-1-a,
故f(x)在(-1,-1-a)上单调递减;
由得x>-1-a,
故f(x)在(-1-a,+∞)上单调递增.
综上,当a≥0时,函数f(x)在(-1,+∞)上单调递增;
当a<0时,函数f(x)在(-1,-1-a)上单调递减,
在(-1-a,+∞)上单调递增.
练习册系列答案
相关题目
【题目】某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四次试验,得到的数据如下:
零件的个数x(个) | 2 | 3 | 4 | 5 |
加工的时间y(小时) | 2.5 | 3 | 4 | 4.5 |
(1)求出y关于x的线性回归方程;
(2)试预测加工10个零件需要多少小时?
(注:=,=-b)