题目内容
【题目】已知函数.
(1)若函数有两个零点,求实数的取值范围;
(2)若函数有两个极值点,试判断函数的零点个数.
【答案】(1)(2)3
【解析】试题分析:(1)第(1)问 ,先把问题转化成的图象与的图象有两个交点,再利用导数求出 的单调性,通过图像分析得到a的取值范围.(2)第(2)问,先通过函数有两个极值点分析出函数g(x)的单调性,再通过图像研究得到它的零点个数.
试题解析:(1)令,由题意知的图象与的图象有两个交点.
.
当时,,∴在上单调递增;
当时,,∴在上单调递减.
∴.
又∵时,,∴时,.
又∵时,.
综上可知,当且仅当时,与的图象有两个交点,即函数有两个零点.
(2)因为函数有两个极值点,
由,得有两个不同的根,(设).
由(1)知,,,且,
且函数在,上单调递减,在上单调递增,
则 .
令,
则 ,
所以函数在上单调递增,
故,.又,;,,
所以函数恰有三个零点.
练习册系列答案
相关题目
【题目】某同学用“五点法”画函数在某一个周期内的图象时,列表并填入了部分数据,如下表:
0 | |||||
0 | 2 | 0 | 0 |
(1)请将上表数据补充完整,填写在相应位置,并求出函数的解析式;
(2)把的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移个单位长度,得到函数的图象,求的值.