题目内容

设F1,F2分别是椭圆的左,右焦点,过F1的直线L与椭圆相交于A,B两点,|AB|=,直线L的斜率为1,则b的值为(  )
A.B.C.D.
D
L的方程为y=x+c,其中c=.
设A(x1,y1),B(x2,y2),则A,B两点坐标满足方程组
化简得(1+b2)x2+2cx+1-2b2=0.
则x1+x2,x1x2.
因为直线AB的斜率为1,
所以|AB|=|x2-x1|,即|x2-x1|.
=(x1+x2)2-4x1x2,解得b=,选D.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网