题目内容
【题目】已知函数(,且),且.
(1)求实数的值;
(2)判断函数的奇偶性并证明
(3)若函数有零点,求实数的取值范围.
【答案】(1)2(2)奇函数.见解析 (3)或.
【解析】
(1)代入求解即可.
(2)由(1)化简可得,再分析与的关系判定即可.
(3)分析可知有实根,再换元令,分析,的取值范围进而求得的取值范围即可.
(1)因为
解得
(2)是奇函数.
由得:
故,所以是奇函数
(3)方法一:
代入可得
因为有零点,所以有实根.
显然不是的实根,所以有实根.
设,,.因为.
①当时,,所以,
所以
②当时,,
所以
综上,的值域为
所以,当时,有实根,
即有零点
方法二:代入可得
因为有零点,所以有实根.
所以有实根.
显然,时上式不成立,所以有实根
因为,
所以
所以或.
所以,当时,有实根.
即有零点
练习册系列答案
相关题目
【题目】某企业生产甲、乙两种产品均需要,两种原料,已知生产1吨每种产品所需原料及每天原料的可用限额如表所示.如果生产1吨甲、乙产品可获得利润分别为3万元、4万元,则该企业每天可获得最大利润为( )
甲 | 乙 | 原料限额 | |
(吨) | 3 | 2 | 10 |
(吨) | 1 | 2 | 6 |
A. 10万元B. 12万元C. 13万元D. 14万元