题目内容
已知正项数列{an}的前n项的乘积等于Tn=(
)n2-6n(n∈N*),bn=log2an,则数列{bn}的前n项和Sn中最大值是( )
1 |
4 |
A.S6 | B.S5 | C.S4 | D.S3 |
由已知当n=1时,a1=T1=(
)-5=45,当n≥2时,an=
=(
)2n-7,n=1时也适合上式,
数列{an}的通项公式为an=(
)2n-7∴bn=log2an=14-4n,数列{bn}是以10为首项,以-4为公差的等差数列.
Sn=10n+
=-2n2+12n=-2[(n-3)2-9],当n=3时取得最大值.
故选D
1 |
4 |
Tn |
Tn-1 |
1 |
4 |
数列{an}的通项公式为an=(
1 |
4 |
Sn=10n+
n(n-1)×(-4) |
2 |
故选D
练习册系列答案
相关题目