题目内容
(理)在数列{an}中,a1=6,且对任意大于1的正整数n,点(
,
)在直线x-y=
上,则数列{
}的前n项和Sn=______.
an |
an-1 |
6 |
an |
n3(n+1) |
∵点(
,
)在直线x-y=
上,
则
-
=
,
又
=
,
∴{
}是以
为首项,
为公差的等差数列,
∴
=
+(n-1)×
=
n,
即an=6n2,
则
=
=6(
-
)
所以Sn=6[(1-
)+(
-
)+…+(
-
)]
=6(1-
)=
故答案为:
an |
an-1 |
6 |
则
an |
an-1 |
6 |
又
a1 |
6 |
∴{
an |
6 |
6 |
∴
an |
6 |
6 |
6 |
即an=6n2,
则
an |
n3(n+1) |
6 |
n(n+1) |
1 |
n |
1 |
n+1 |
所以Sn=6[(1-
1 |
2 |
1 |
2 |
1 |
3 |
1 |
n |
1 |
n+1 |
=6(1-
1 |
n+1 |
6n |
n+1 |
故答案为:
6n |
n+1 |
练习册系列答案
相关题目