题目内容
【题目】已知等差数列{an}前n项和为Sn , 且 (n∈N*).
(Ⅰ) 求c,an;
(Ⅱ) 若 ,求数列{bn}前n项和Tn .
【答案】(Ⅰ)∵ , ∴a1=S1=1+c,a2=S2﹣S1=(4+c)﹣(1+c)=3,a3=S3﹣S2=5
又∵{an}等差数列,∴6+c=6,c=0;
d=3﹣1=2;a1=S1=1+c=1,
∴an=1+2(n﹣1)=2n﹣1
(Ⅱ)
…①
…②
①﹣②得
【解析】(Ⅰ)利用数列递推关系、等差数列的通项公式即可得出.(Ⅱ)利用“错位相减法”与等比数列的求和公式即可得出.
【考点精析】本题主要考查了数列的前n项和的相关知识点,需要掌握数列{an}的前n项和sn与通项an的关系才能正确解答此题.
练习册系列答案
相关题目
【题目】据统计,某地区植被覆盖面积公顷与当地气温下降的度数之间呈线性相关关系,对应数据如下:
公顷 | 20 | 40 | 60 | 80 |
3 | 4 | 4 | 5 |
请用最小二乘法求出y关于x的线性回归方程;
根据中所求线性回归方程,如果植被覆盖面积为300公顷,那么下降的气温大约是多少?
参考公式:线性回归方程;其中,.