题目内容
如图,在三棱锥P-ABC中,PC⊥底面ABC,AB⊥BC,D,E分别是AB、PB的中点.
(1)求证:DE∥平面PAC;
(2)求证:AB⊥PB.
(1)求证:DE∥平面PAC;
(2)求证:AB⊥PB.
证明:(1)∵D,E分别是AB,PB的中点,
∴DE∥PA.
又∵PA?平面PAC,DE?平面PAC
∴DE∥平面PAC;
(2)∵PC⊥底面ABC,AB?底面ABC,
∴PC⊥AB,
∵AB⊥BC,PC∩BC=C,PC?平面PBC,BC?平面PBC,
∴AB⊥平面PBC,
∵PB?平面PBC,
∴AB⊥PB.
∴DE∥PA.
又∵PA?平面PAC,DE?平面PAC
∴DE∥平面PAC;
(2)∵PC⊥底面ABC,AB?底面ABC,
∴PC⊥AB,
∵AB⊥BC,PC∩BC=C,PC?平面PBC,BC?平面PBC,
∴AB⊥平面PBC,
∵PB?平面PBC,
∴AB⊥PB.
练习册系列答案
相关题目