ÌâÄ¿ÄÚÈÝ
12£®Ä³°à¼¶ÌåÓý¿Î½øÐÐÒ»´ÎÀºÇò¶¨µãͶÀº²âÊÔ£¬¹æ¶¨Ã¿ÈË×î¶àͶ3´Î£¬Ã¿´ÎͶÀºµÄ½á¹ûÏ໥¶ÀÁ¢£®ÔÚA´¦Ã¿Í¶½øÒ»ÇòµÃ3·Ö£¬ÔÚB´¦Ã¿Í¶½øÒ»ÇòµÃ2·Ö£¬·ñÔòµÃ0·Ö£®½«Ñ§ÉúµÃ·ÖÖð´ÎÀÛ¼Ó²¢ÓÃX±íʾ£¬Èç¹ûXµÄÖµ²»µÍÓÚ3·Ö¾ÍÅж¨ÎªÍ¨¹ý²âÊÔ£¬Á¢¼´Í£Ö¹Í¶Àº£¬·ñÔòÓ¦¼ÌÐøͶÀº£¬Ö±µ½Í¶ÍêÈý´ÎΪֹ£®ÏÖÓÐÁ½ÖÖͶÀº·½°¸£º·½°¸1£ºÏÈÔÚA´¦Í¶Ò»Çò£¬ÒÔºó¶¼ÔÚB´¦Í¶£»
·½°¸2£º¶¼ÔÚB´¦Í¶Àº£®
ÒÑÖª¼×ͬѧÔÚA´¦Í¶ÀºµÄÃüÖÐÂÊΪ$\frac{1}{4}$£¬ÔÚB´¦Í¶ÀºµÄÃüÖÐÂÊΪ$\frac{4}{5}$£®
£¨¢ñ£©Èô¼×ͬѧѡÔñ·½°¸1£¬ÇóËû²âÊÔ½áÊøºóËùµÃ×Ü·ÖXµÄ·Ö²¼ÁкÍÊýѧÆÚÍûE£¨X£©£»
£¨¢ò£©ÄãÈÏΪ¼×ͬѧѡÔñÄÄÖÖ·½°¸Í¨¹ý²âÊԵĿÉÄÜÐÔ¸ü´ó£¿ËµÃ÷ÀíÓÉ£®
·ÖÎö £¨I£©È·¶¨¼×ͬѧÔÚA´¦Í¶ÖÐΪʼþA£¬ÔÚB´¦µÚ´ÎiͶÖÐΪʼþBi£¨i=1£¬2£©£¬¸ù¾ÝÌâÒâÖª$P£¨A£©=\frac{1}{4}£¬P£¨{B_i}£©=\frac{4}{5}$£®×Ü·ÖXµÄȡֵΪ0£¬2£¬3£¬4£®ÀûÓøÅÂÊ֪ʶÇó½âÏàÓ¦µÄ¸ÅÂÊ£®
£¨2£©Éè¼×ͬѧѡÔñ·½°¸1ͨ¹ý²âÊԵĸÅÂÊΪP1£¬Ñ¡Ôñ·½°¸2ͨ¹ý²âÊԵĸÅÂÊΪP2£¬ÀûÓøÅÂʹ«Ê½µÃ³öP1£¬P2£¬±È½Ï¼´¿É£®
½â´ð ½â£º£¨¢ñ£©Éè¼×ͬѧÔÚA´¦Í¶ÖÐΪʼþA£¬ÔÚB´¦µÚ´ÎiͶÖÐΪʼþBi£¨i=1£¬2£©£¬
ÓÉÒÑÖª$P£¨A£©=\frac{1}{4}£¬P£¨{B_i}£©=\frac{4}{5}$£®XµÄȡֵΪ0£¬2£¬3£¬4£®
Ôò$P£¨X=0£©=P£¨\bar A{\bar B_1}{\bar B_2}£©=P£¨\bar A£©P£¨{\bar B_1}£©P£¨{\bar B_2}£©=\frac{3}{4}¡Á\frac{1}{5}¡Á\frac{1}{5}=\frac{3}{100}$£¬$P£¨X=2£©=P£¨\bar A{B_1}{\bar B_2}£©+P£¨\bar A{\bar B_1}{B_2}£©=\frac{3}{4}¡Á\frac{4}{5}¡Á\frac{1}{5}+\frac{3}{4}¡Á\frac{1}{5}¡Á\frac{4}{5}=\frac{6}{25}$£¬
$P£¨X=3£©=P£¨A£©=\frac{1}{4}$£¬$P£¨X=4£©=P£¨\bar A{B_1}{B_2}£©=\frac{3}{4}¡Á\frac{4}{5}¡Á\frac{4}{5}=\frac{12}{25}$£¬
XµÄ·Ö²¼ÁÐΪ£º
X | 0 | 2 | 3 | 4 |
P | $\frac{3}{100}$ | $\frac{6}{25}$ | $\frac{1}{4}$ | $\frac{12}{25}$ |
£¨¢ò£©¼×ͬѧѡÔñ·½°¸1ͨ¹ý²âÊԵĸÅÂÊΪP1£¬Ñ¡Ôñ·½°¸2ͨ¹ý²âÊԵĸÅÂÊΪP2£¬
Ôò${P_1}=P£¨X=3£©+P£¨X=4£©=\frac{1}{4}+\frac{12}{25}=\frac{73}{100}=0.73$£¬${P_2}=P£¨{B_1}{B_2}£©+P£¨{\bar B_1}{B_2}{B_3}£©+P£¨{B_1}{\bar B_2}{B_3}£©=\frac{4}{5}¡Á\frac{4}{5}+\frac{1}{5}¡Á\frac{4}{5}¡Á\frac{4}{5}+\frac{4}{5}¡Á\frac{1}{5}¡Á\frac{4}{5}=\frac{112}{125}=0.896$£¬
¡ßP2£¾P1£¬
¡à¼×ͬѧѡÔñ·½°¸2ͨ¹ý²âÊԵĿÉÄÜÐÔ¸ü´ó£®
µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÀëÉ¢ÐÍËæ»ú±äÁ¿·Ö²¼Áм°ÊýѧÆÚÍûµÈ»ù´¡ÖªÊ¶£¬¿¼²éÊý¾Ý´¦ÀíÄÜÁ¦¡¢ÔËËãÇó½âÄÜÁ¦ÒÔ¼°Ó¦ÓÃÒâʶ£¬¿¼²é±ØÈ»Óë»òȻ˼ÏëµÈ£®
A£® | $\frac{2\sqrt{14}}{5}$ | B£® | -$\frac{2\sqrt{14}}{5}$ | C£® | ¡À$\frac{2\sqrt{14}}{5}$ | D£® | ¡À$\frac{5\sqrt{14}}{28}$ |
A£® | 45·ÖÖÓ | B£® | 1Сʱ | C£® | 1.5Сʱ | D£® | 2Сʱ |
A£® | Ïà¹ØÖ¸ÊýR2Ϊ0.95µÄÄ£ÐÍ | B£® | Ïà¹ØÖ¸ÊýR2Ϊ0.81µÄÄ£ÐÍ | ||
C£® | Ïà¹ØÖ¸ÊýR2Ϊ0.50µÄÄ£ÐÍ | D£® | Ïà¹ØÖ¸ÊýR2Ϊ0.32µÄÄ£ÐÍ |
£¨1£©¸ù¾ÝÒÑÖªÌõ¼þÍê³É2¡Á2ÁÐÁª±í£º
¿Æ»ÃƬ | ÎÄÒÕƬ | ºÏ¼Æ | |
ÄÐ | 60 | 40 | 100 |
Å® | 20 | 40 | 60 |
ºÏ¼Æ | 80 | 80 | 160 |
Ëæ»ú±äÁ¿K2=$\frac{n£¨ad-bc£©^{2}}{£¨a+b£©£¨c+d£©£¨a+c£©£¨b+d£©}$£¨ÆäÖÐn=a+b+c+d£©
ÁÙ½çÖµ±í£º
P£¨K2¡Ýk£© | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
A£® | $\frac{32}{45}$ | B£® | $\frac{16}{45}$ | C£® | $\frac{8}{45}$ | D£® | $\frac{4}{45}$ |