题目内容
4.在某次电影展映活动中,展映的影片类型有科幻片和文艺片两种,统计数据显示.100名男性观众中选择科幻片的有60名,60名女性观众中选择文艺片的有40名.(1)根据已知条件完成2×2列联表:
科幻片 | 文艺片 | 合计 | |
男 | 60 | 40 | 100 |
女 | 20 | 40 | 60 |
合计 | 80 | 80 | 160 |
随机变量K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$(其中n=a+b+c+d)
临界值表:
P(K2≥k) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
分析 (1)直接利用条件列表即可.
(2)利用随机变量K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,求出k2,判断即可.
解答 解:(1)由题可得
科幻片 | 文艺片 | 合计 | |
男 | 60 | 40 | 100 |
女 | 20 | 40 | 60 |
合计 | 80 | 80 | 160 |
${K^2}=\frac{{160×{{(60×40-40×20)}^2}}}{80×80×100×60}≈10.667>6.635$
∴有99%的把握认为“观影类型与性别有关”
点评 本题考查2×2列联表的填法,对立检验的运用,考查计算能力.
练习册系列答案
相关题目
14.若函数f(x)=$\sqrt{3}$cos(2x+α)-sin(2x+α)的图象关于直线x=0对称,则α=( )
A. | α=kπ-$\frac{π}{3}$(k∈Z) | B. | α=kπ-$\frac{π}{6}$(k∈Z) | C. | α=kπ+$\frac{π}{3}$(k∈Z) | D. | α=kπ+$\frac{π}{6}$(k∈Z) |
19.已知p:关于x的方程x2+8x+a2=0有实根;q:对任意x∈R,不等式ex+$\frac{1}{e^x}$>a恒成立,若p∧q为真命题,则实数a的取值范围是( )
A. | -4<a≤2 | B. | -4≤a<2 | C. | a≤4 | D. | a≥-4 |