题目内容
【题目】已知直线l经过直线2x+y-5=0与x-2y=0的交点P.
(1)若直线l平行于直线l1:4x-y+1=0,求l的方程;
(2)若直线l垂直于直线l1:4x-y+1=0,求l的方程.
【答案】(1):4x-y-7=0;(2)x+4y-6=0
【解析】
联立两条已知直线的方程,求得交点的坐标,(1)根据平行设出直线方程,将点坐标代入求得参数的值,由此求得的方程.(2)根据垂直设出直线方程,将点坐标代入求得参数的值,由此求得的方程.
联立,解得P(2,1).
(1)设直线l:4x-y+m=0,把(2,1)代入可得:4×2-1+m=0,m=-7.∴l的方程为:4x-y-7=0;
(2)设直线l的方程为:x+4y+n=0,把点P(2,1)代入上述方程可得:2+4+n=0,解得n=-6.
∴x+4y-6=0.
练习册系列答案
相关题目