题目内容

【题目】若(2x)5=a0+a1x+a2x2+a3x3+a4x4+a5x5.求:

(1)|a0|+|a1|+|a2|+|a3|+|a4|+|a5|;

(2)(a0+a2+a4)2-(a1+a2+a3)2.

【答案】(1)(2+)5(2)1

【解析】

(1)根据展开式特点去绝对值,再利用赋值法求结果,(2)根据平方差公式展开,再利用赋值法求结果.

令x=1,得a0+a1+a2+a3+a4+a5=(2-)5

令x=-1,得a0-a1+a2-a3+a4-a5=(2+)5

(1)|a0|+|a1|+|a2|+|a3|+|a4|+|a5|=a0-a1+a2-a3+a4-a5=(2+)5

(2)(a0+a2+a4)2-(a1+a2+a3)2=(a0+a1+a2+a3+a4+a5)×(a0-a1+a2-a3+a4-a5)

= (2-)5 ×(2+)5 =1

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网