题目内容
【题目】已知函数f(x)=lnx+ ax2﹣2bx
(1)设点a=﹣3,b=1,求f(x)的最大值;
(2)当a=0,b=﹣ 时,方程2mf(x)=x2有唯一实数解,求正数m的取值范围.
【答案】
(1)解:a=﹣3,b=1时,f(x)=lnx﹣ x2﹣2x,
f′(x)= ﹣3x﹣2,f″(x)=﹣ ﹣3<0,
∴f′(x)在(0,+∞)递减,
而f′( )=0,
∴f(x)在(0, )递增,在( ,+∞)递减,
∴f(x)max=f( )=﹣ln3﹣
(2)解:∵方程2mf(x)=x2有唯一实数解,即x2﹣2mlnx﹣2mx=0有唯一实数解,
设g(x)=x2﹣2mlnx﹣2mx,则g′(x)= .
令g′(x)=0,x2﹣mx﹣m=0.
∵m>0,x>0,
∴x1= <0(舍去),x2= .
当x∈(0,x2)时,g′(x)<0,g(x)在(0,x2)上单调递减;当x∈(x2,+∞)时,g′(x)>0,g(x)在(x2,+∞)上单调递增.
∴g(x)最小值为g(x2).
则 ,即 ,
∴2mlnx2+mx2﹣m=0即2lnx2+x2﹣1=0.
设h(x)=2lnx+x﹣1(x>0),h′(x)= +1>0恒成立,
故h(x)在(0,+∞)单调递增,h(x)=0至多有一解.
又h(1)=0,
∴x2=1,
即 =1,解得m=
【解析】(1)a=﹣3,b=1,求出函数的导数,得到函数的单调区间,从而求出函数的最大值即可;(2)方程2mf(x)=x2有唯一实数解,即x2﹣2mlnx﹣2mx=0有唯一实数解,设g(x)=x2﹣2mlnx﹣2mx,利用导数可得其最小值为g(x2).则 ,即2lnx2+x2﹣1=0.设h(x)=2lnx+x﹣1(x>0),再利用导数研究其单调性即可得出答案.
【考点精析】解答此题的关键在于理解利用导数研究函数的单调性的相关知识,掌握一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减,以及对函数的最大(小)值与导数的理解,了解求函数在上的最大值与最小值的步骤:(1)求函数在内的极值;(2)将函数的各极值与端点处的函数值,比较,其中最大的是一个最大值,最小的是最小值.