ÌâÄ¿ÄÚÈÝ
1£®ÔÚÖ±½Ç×ø±êϵÖУ¬ÒÔÔµãΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖὨÁ¢×ø±êϵ£®ÒÑÖªÇúÏßC£º¦Ñsin2¦È=2acos¦È£¨a£¾0£©£¬¹ýµãP£¨-2£¬-4£©µÄÖ±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=-2+\frac{\sqrt{2}}{2}t}\\{y=-4+\frac{\sqrt{2}}{2}t}\end{array}\right.$£¨tΪ²ÎÊý£©£¬Ö±ÏßlÓëÇúÏßC·Ö±ð½»ÓÚM¡¢NÁ½µã£®£¨1£©Ð´³öÇúÏßCºÍÖ±ÏßlµÄÆÕͨ·½³Ì£»
£¨2£©Èô|PM|£¬|MN|£¬|PN|³ÉµÈ±ÈÊýÁУ¬ÇóaµÄÖµ£®
·ÖÎö £¨1£©Ö±½ÓÀûÓùØϵʽ°Ñ¼«×ø±ê·½³Ìת»¯³ÉÖ±½Ç×ø±ê·½³Ì£®
£¨2£©ÀûÓòÎÊý·½³ÌºÍÅ×ÎïÏß·½³Ì½¨Á¢³É¹ØÓÚtµÄÒ»Ôª¶þ´Î·½³Ì×飬ÀûÓøùºÍϵÊýµÄ¹ØϵÇó³öÁ½¸ùºÍÓëÁ½¸ù»ý£¬½øÒ»²½ÀûÓõȱÈÊýÁнøÒ»²½Çó³öaµÄÖµ£®
½â´ð ½â£º£¨1£©ÇúÏßC£º¦Ñsin2¦È=2acos¦È£¨a£¾0£©£¬
ת»¯³ÉÖ±½Ç×ø±ê·½³ÌΪ£ºy2=2ax
ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=-2+\frac{\sqrt{2}}{2}t}\\{y=-4+\frac{\sqrt{2}}{2}t}\end{array}\right.$£¨tΪ²ÎÊý£©£¬
ת»¯³ÉÖ±½Ç×ø±ê·½³ÌΪ£ºx-y-2=0£®
£¨2£©½«Ö±ÏߵIJÎÊý·½³Ì$\left\{\begin{array}{l}{x=-2+\frac{\sqrt{2}}{2}t}\\{y=-4+\frac{\sqrt{2}}{2}t}\end{array}\right.$£¨tΪ²ÎÊý£©£¬´úÈëy2=2axµÃµ½£º
$\frac{1}{2}{t}^{2}-£¨4\sqrt{2}+\sqrt{2}a£©t+16+4a=0$£¬
ËùÒÔ£º${t}_{1}+{t}_{2}=8\sqrt{2}+2\sqrt{2}a$£¬t1t2=32+8a£¬¢Ù
Ôò£º|PM|=t1£¬|PN|=t2£¬|MN|=|t1-t2|
|PM|£¬|MN|£¬|PN|³ÉµÈ±ÈÊýÁУ¬
ËùÒÔ£º$|{t}_{1}-{t}_{2}{|}^{2}=|{t}_{1}{t}_{2}|$£¬¢Ú
Óɢ٢ڵãºa=1£®
µãÆÀ ±¾Ì⿼²éµÄ֪ʶҪµã£º¼«×ø±ê·½³ÌÓëÖ±½Ç×ø±ê·½³ÌµÄ»¥»¯£¬²ÎÊý·½³ÌÓëÖ±½Ç×ø±ê·½³ÌµÄ»¥»¯£¬ÀûÓøùºÍϵÊýµÄ¹Øϵ½¨Á¢·½³Ì×éÇó½â£¬µÈ±ÈÊýÁеÄÓ¦Óã®
A£® | S£¼8£¿ | B£® | S£¼12£¿ | C£® | S£¼14£¿ | D£® | S£¼16£¿ |
A£® | B£® | C£® | D£® |
A£® | ¦Ð | B£® | 3¦Ð | C£® | 6¦Ð | D£® | 9¦Ð |
A£® | ba£¾0 | B£® | a+b£¾0 | C£® | ab£¾1 | D£® | loga2£¾b |
A£® | -1006 | B£® | 1007 | C£® | -1008 | D£® | 1009 |