题目内容
(本小题满分13分)
在数列
中,已知
.
(Ⅰ)求数列
的通项公式;
(Ⅱ)求证:数列
是等差数列;
(Ⅲ)设数列
满足
,求
的前n项和
.
在数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004738481477.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240047384971647.png)
(Ⅰ)求数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004738481477.png)
(Ⅱ)求证:数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004738528487.png)
(Ⅲ)设数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004738544444.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004738559542.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004738544444.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004738590388.png)
(Ⅰ)
.(Ⅱ)由
的通项公式求
的通项公式即可得证.
(Ⅲ)![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240047386531237.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004738606834.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004738622348.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004738637365.png)
(Ⅲ)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240047386531237.png)
试题分析:(Ⅰ)∵
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004738668561.png)
∴数列{
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004738684337.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004738700272.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004738700272.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004738606834.png)
(Ⅱ)∵
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004738746751.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240047387621025.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004738778357.png)
∴数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004738809439.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004738778357.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004738824365.png)
(Ⅲ)由(Ⅰ)知,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004738840565.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004738871541.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004738887404.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240047388871040.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240047389801896.png)
于是
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240047389962041.png)
两式①-②相减得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240047390271551.png)
=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004739043844.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240047386531237.png)
点评:本题考查数列的证明,求和,着重考查数列的 “错位相减法”求和,属于中档题.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目