题目内容

【题目】用an表示自然数n的所有因数中最大的那个奇数,例如:9的因数有1,3,9,则a9=9;10的因数有1,2,5,10,则a10=5,记数列{an}的前n项和为Sn , 则S =

【答案】
【解析】解:令an=g(n). 由an的定义易知g(n)=g(2n),且若n为奇数则g(n)=n
令f(n)=g(1)+g(2)+g(3)+…g(2n﹣1)
则f(n+1)=g(1)+g(2)+g(3)+…g(2n+1﹣1)=1+3+…+(2n+1﹣1)+g(2)+g(4)+…+g(2n+1﹣2)
= 2n[1+(2n+1﹣1)]+g(1)+g(2)+…+g(2n+1﹣2)=4n+f(n)
即f(n+1)﹣f(n)=4n
分别取n为1,2,…,n并累加得f(n+1)﹣f(1)=4+42+…+4n= = (4n﹣1)
又f(1)=g(1)=1,∴f(n+1)= (4n﹣1)+1.
∴S =
所以答案是:
【考点精析】关于本题考查的数列的前n项和,需要了解数列{an}的前n项和sn与通项an的关系才能得出正确答案.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网