题目内容

(本题10分)已知,动点满足,设动点的轨迹是曲线,直线与曲线交于两点.(1)求曲线的方程;
(2)若,求实数的值;
(3)过点作直线垂直,且直线与曲线交于两点,求四边形面积的最大值.
(1)曲线的方程为;(2)
(3)当时,四边形面积有最大值7.

试题分析:(1)设为曲线上任一点,则由,化简整理得
(2)因为根据向量的关系式,,所以所以圆心到直线的距离,所以 
(3)对参数k,分情况讨论,当时,,
时,圆心到直线的距离,所以
,同理得|PQ|,求解四边形的面积。
解:(1)设为曲线上任一点,则由,化简整理得
曲线的方程为              --------------3分 
(2)因为,所以
所以圆心到直线的距离,所以。   -----6分
(3)当时,,
时,圆心到直线的距离,所以
,同理得
所以
=7当且仅当时取等号。
所以当时,
综上,当时,四边形面积有最大值7.           --11
点评:解决该试题的关键是设出所求点满足的关系式,化简得到轨迹方程,同时利用联立方程组的思想得到长度和面积的表示。
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网