题目内容

函数f(x)=x2-2x+3,若|f(x)-a|<2恒成立的充分条件是1≤x≤2,则实数a的取值范围是______.
∵|f(x)-a|<2恒成立的充分条件是1≤x≤2,
∴当1≤x≤2时,|f(x)-a|<2恒成立,
即-2<f(x)-a<2,
∴a-2<f(x)<2+a恒成立,
∵1≤x≤2,
∴2≤f(x)≤3,
∴要使a-2<f(x)<2+a恒成立,
2+a>3
a-2<2

a>1
a<4

∴1<a<4,
故答案为:1<a<4
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网