题目内容
【题目】已知a、b、c为的三边长,直线的方程为,圆.
(1)若为直角三角形,c为斜边长,且直线与圆M相切.求c的值;
(2)已知为坐标原点,点,,,,平行于ON的直线h与圆M相交于R,两点,且,求直线h的方程:
(3)若为正三角形,对于直线上任意一点P,在圆上总存在一点,使得线段的长度为整数,求c的取值范围;
【答案】(1) (2)或 (3).
【解析】
(1)为直角三角形,为斜边长,则,又直线与圆相切,根据点到直线的距离公式,得到关于的方程,求出即可.
(2)由直线平行于计算出斜率,设直线h的方程为,利用点到线的距离公式求距离,勾股定理得到方程,即可求出参数。
(3)此时圆为以为圆心,以为半径的圆,直线可化为,直线上任意一点,在圆上总存在一点,使得线段的长度为整数,设圆心到直线的距离为,只需能用整数表示,并且圆的直径即可.
解:(1)由题意得,
圆心到直线的距离,
或0(舍)
综上:.
(2)圆M的标准方程为,
所以圆心,半径为5.
因为直线,所以直线h的斜率为.
设直线h的方程为,即,
则圆心M到直线h的距离.
因为
而,所以,
解得或.
故直线h的方程为或.
(3)为正三角形,
,直线,
,对于这条直线,总存在无穷多点在圆外,
从中找一个到圆心距离为的点P,则点P到图上任意点的距离,
,时不存在整数,
;下面分类讨论:
(Ⅰ)直线与圆相切或相离,即;即;
此时,所以可以取到整数.
(Ⅱ)线与圆相交,即,直线上不在圆内的点P,同理成立;
对于直线上在圆内部分的任意点P,,
,
所以使得存在整数的条件是对任意点P都成立,
,,
所以,
综上.
【题目】随着小汽车的普及,“驾驶证”已经成为现代人“必考”的证件之一.若某人报名参加了驾驶证考试,要顺利地拿到驾驶证,他需要通过四个科目的考试,其中科目二为场地考试.在一次报名中,每个学员有5次参加科目二考试的机会(这5次考试机会中任何一次通过考试,就算顺利通过,即进入下一科目考试;若5次都没有通过,则需重新报名),其中前2次参加科目二考试免费,若前2次都没有通过,则以后每次参加科目二考试都需要交200元的补考费.某驾校对以往2000个学员第1次参加科目二考试进行了统计,得到下表:
考试情况 | 男学员 | 女学员 |
第1次考科目二人数 | 1200 | 800 |
第1次通过科目二人数 | 960 | 600 |
第1次未通过科目二人数 | 240 | 200 |
若以上表得到的男、女学员第1次通过科目二考试的频率分别作为此驾校男、女学员每次通过科目二考试的概率,且每人每次是否通过科目二考试相互独立.现有一对夫妻同时在此驾校报名参加了驾驶证考试,在本次报名中,若这对夫妻参加科目二考试的原则为:通过科目二考试或者用完所有机会为止.
(1)求这对夫妻在本次报名中参加科目二考试都不需要交补考费的概率;
(2)若这对夫妻前2次参加科目二考试均没有通过,记这对夫妻在本次报名中参加科目二考试产生的补考费用之和为元,求的分布列与数学期望.