题目内容
12.设数列{an}满足a1=2,an=4an-1+2n,n∈N*,且n≥2.(1)求证:数列{an+2n}为等比数列;
(2)若Sn为数列{an}的前n项和,设bn=$\frac{{2}^{n}}{{S}_{n}}$,n∈N*,证明:b1+b2+…+bn<$\frac{3}{2}$.
分析 (1)通过对an=4an-1+2n变形可知an+2n=4(an-1+2n-1),进而即得结论;
(2)通过(1)得an=4n-2n,通过变形可知Sn=$\frac{2}{3}$•(2n+1-1)(2n-1),裂项可知bn=$\frac{3}{2}$•($\frac{1}{{2}^{n}-1}$-$\frac{1}{{2}^{n+1}-1}$),进而并项相加、放缩即得结论.
解答 证明:(1)∵an=4an-1+2n,
∴an+2n=4(an-1+2n-1),
又∵a1+21=2+2=4,
∴数列{an+2n}是首项、公比均为4的等比数列;
(2)由(1)得:an+2n=4n,∴an=4n-2n,
∴Sn=$\frac{4(1-{4}^{n})}{1-4}$-$\frac{2(1-{2}^{n})}{1-2}$
=$\frac{4}{3}$(4n-2n)-$\frac{1}{3}$•2n+1+$\frac{2}{3}$
=$\frac{1}{3}$•(2n+1-1)(2n+1-2)
=$\frac{2}{3}$•(2n+1-1)(2n-1),
∴bn=$\frac{{2}^{n}}{{S}_{n}}$
=$\frac{3}{2}$•$\frac{{2}^{n}}{({2}^{n+1}-1)({2}^{n}-1)}$
=$\frac{3}{2}$•($\frac{1}{{2}^{n}-1}$-$\frac{1}{{2}^{n+1}-1}$),
∴b1+b2+…+bn
=$\frac{3}{2}$•(1-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{7}$+…+$\frac{1}{{2}^{n}-1}$-$\frac{1}{{2}^{n+1}-1}$)
=$\frac{3}{2}$•(1-$\frac{1}{{2}^{n+1}-1}$)
<$\frac{3}{2}$.
点评 本题考查数列的通项及前n项和,考查运算求解能力,对表达式的灵活变形是解决本题的关键,注意解题方法的积累,属于中档题.
A. | a>b>c | B. | b>a>c | C. | c>a>b | D. | c>b>a |
A. | $\frac{1}{2}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{6}$ | D. | $\frac{2}{3}$ |
A. | $\frac{5}{7}$ | B. | $\frac{11}{14}$ | C. | -$\frac{5}{7}$ | D. | -$\frac{11}{14}$ |
A. | 2k+1 | B. | 2k-1 | C. | 2k | D. | 2k-1 |
A. | 150° | B. | 120° | C. | 60° | D. | 30° |