题目内容
【题目】环保部门对5家造纸厂进行排污检查,若检查不合格,则必须整改,整改后经复查仍然不合格的,则关闭.设每家造纸厂检查是否合格是相互独立的,且每家造纸厂检查前合格的概率是 ,整改后检查合格的概率是 ,求:
(Ⅰ)恰好有两家造纸厂必须整改的概率;
(Ⅱ)至少要关闭一家造纸厂的概率;
(Ⅲ)平均多少家造纸厂需要整改?(其中( )5≈ )
【答案】解:(Ⅰ)每家造纸厂必须整改的概率是1﹣0.5,
且每家造纸厂是否整改是相互独立的.
所以恰好有两家造纸厂必须整改的概率是
P1= ×(1﹣0.5)2×0.53= =0.31.
(Ⅱ)某造纸厂被关闭,
即该造纸厂第一次安检不合格,
整改后经复查仍不合格,
所以该造纸厂被关闭的概率是
P2=(1﹣0.5)×(1﹣0.8)=0.1,
从而该造纸厂不被关闭的概率是0.9.
由题意,每家造纸厂是否被关闭是相互独立的,
所以至少关闭一家造纸厂的概率是:
P3=1﹣0.95=0.41;
(Ⅲ)由题设,必须整改的造纸厂数ξ服从二项分布B(5,0.5).
从而ξ的数学期望是Eξ=5×0.5=2.5,
即平均有2.50家造纸厂必须整改
【解析】(Ⅰ)由每家煤矿必须整改的概率是1﹣0.5,且每家煤矿是否整改是相互独立的.代入n次独立重复试验中恰好发生k次的概率公式,即可得到答案;(Ⅱ)要至少关闭一家煤矿的概率.则表示该煤矿第一次安检不合格,整改后经复查仍不合格,代入分步事件概率乘法公式即可得到结论;(Ⅲ)由题意,必须整改的煤矿数ξ服从二项分布B(5,0.5),我们计算出ξ的数学期望,根据数学期望易得到平均有多少家煤矿必须整改.
练习册系列答案
相关题目