题目内容
【题目】定义在R上的偶函数f(x)满足f(x+2)=f(x),且在[﹣3,﹣2]上是减函数,若α,β是锐角三角形的两个内角,则( )
A.f(sinα)>f(sinβ)
B.f(sinα)<f(cosβ)
C.f(cosα)<f(cosβ)
D.f(sinα)>f(cosβ)
【答案】D
【解析】解:由题意:可知f(x+2)=f(x), ∴f(x)是周期为2的函数,
∵f(x)在[﹣3,﹣2]上为减函数,
∴f(x)在[﹣1,0]上为减函数,
又∵f(x)为偶函数,根据偶函数对称区间的单调性相反,
∴f(x)在[0,1]上为单调增函数.
∵在锐角三角形中,π﹣α﹣β<
∴π﹣α﹣β ,即 ,
∴ >α> ﹣β>0,
∴sinα>sin( )=cosβ;
∵f(x)在[0,1]上为单调增函数.
所以f(sinα)>f(cosβ),
故选:D.
根据f(x+2)=f(x),所以函数的周期为2,在[﹣3,﹣2]上是减函数,可得f(x)在[﹣1,0]上为减函数,因为f(x)为偶函数,所以f(x)在[0,1]上为单调增函数.在根据α,β是锐角三角形的两个内角,利用三角函数诱导公式化简可得答案.
练习册系列答案
相关题目