题目内容

已知椭圆的离心率为,右焦点为,右顶点在圆上.
(Ⅰ)求椭圆和圆的方程;
(Ⅱ)已知过点的直线与椭圆交于另一点,与圆交于另一点.请判断是否存在斜率不为0的直线,使点恰好为线段的中点,若存在,求出直线的方程;若不存在,说明理由.

(Ⅰ);(Ⅱ)不存在

解析试题分析:(Ⅰ)由圆方程可知圆心为,即,又因为离心率为,可得,根据椭圆中关系式,可求。椭圆方程即可求出。因为,则右顶点为,将其代入圆的方程可求半径。(Ⅱ)设出直线方程,然后和椭圆方程联立,消掉y(或x)得到关于x的一元二次方程。再根据韦达定理得出根与系数的关系。因为是其中一个交点,所以方程的一个根为2。用中点坐标公式求点的坐标,再将其代入圆方程。解出的值。若则说明存在满足条件的直线可求出其方程,若,则说明不存在满足条件的直线。法二:假设存在,由已知可得,因为点为线段的中点,所以,因为点在椭圆上可推导得,与矛盾,故假设不成立。
试题解析:(Ⅰ)由题意可得,                           1分
又由题意可得
所以,                                          2分
所以,                                  3分
所以椭圆的方程为.                        4分
所以椭圆的右顶点,                            5分
代入圆的方程,可得,
所以圆的方程为.                       6分
(Ⅱ)法1:
假设存在直线:满足条件,              7分
          8分
,则,                         9分
可得中点,                           11分
由点在圆上可得
化简整理得                                      13分
又因为

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网