题目内容
已知圆及定点,点是圆上的动点,点在上,且满足,点的轨迹为曲线。
(1)求曲线的方程;
(2)若点关于直线的对称点在曲线上,求的取值范围。
(1);(2)。
解析试题分析:(1)本小题首先根据题中的几何条件建立动点与两个定点的距离之和为定值然后结合椭圆的定义可知动点的轨迹为椭圆,并可求得其方程为;
(2)本小题首先求得点关于直线的对称点,再根据点在椭圆:上,则可得,然后利用关于的一元二次方程有正根得到对称轴为、,解得(注意这一条件)
试题解析:(1)设,
∵
∴
由椭圆定义得:曲线的方程为 5分
(2)设关于直线的对称点为,则[来源:学§科§网]
,∴ 7分
∴,
∵在曲线:上,
∴,
化简得:, 9分
∵此方程有正根,令其对称轴为,
∴,
∴,
∵,∴。 12分
考点:1 椭圆的定义;2 一元二次方程
练习册系列答案
相关题目