题目内容
【题目】(本小题满分13分)已知函数(为常数,)
(1)若是函数的一个极值点,求的值;
(2)求证:当时,在上是增函数;
(3)若对任意的,总存在,使不等式成立,求正实数的取值范围.
【答案】(1)2;(2)见解析;(3).
【解析】
试题分析:(1)利用函数在处的导数为0即可求出的值;(2)利用函数的单调性与导数的关系跑到导函数在区间上恒大于0即可(3)若可导函数在指定的区间上单调递增(减),求参数问题,可转化为恒成立,从而构建不等式,要注意“=”是否可以取到.
试题解析: 1分
(1)由已知,得且, 2分
3分
(2)当时,
4分
当时,又 5分
故在上是增函数
(3)时,由(2)知,在上的最大值为
于是问题等价于:对任意的,不等式恒成立. 7分
记
则. 8分
因为 9分
若,可知在区间上递减,在此区间上,有
,与恒成立相矛盾,故,这时, 12分
在上递增,恒有,满足题设要求,
即实数的取值范围为 14分
练习册系列答案
相关题目