题目内容
【题目】如图,AB为⊙O的直径,PA垂直于⊙O所在的平面,M为圆周上任意一点,AN⊥PM,N为垂足.
(1)求证:AN⊥平面PBM;
(2)若AQ⊥PB,垂足为Q,求证:NQ⊥PB.
【答案】(1)见解析(2)见解析
【解析】
(1)由平面得,结合得出平面P,于是,又,根据线面垂直判定定理得结果;(2)由(1)易得,又得出平面,进而可得结果.
证明 (1)∵AB为⊙O的直径,∴AM⊥BM.
又PA⊥平面ABM,∴PA⊥BM,
又∵PA∩AM=A,∴BM⊥平面PAM.
又AN平面PAM,∴BM⊥AN.
又AN⊥PM,且BM∩PM=M,
∴AN⊥平面PBM.
(2)由(1)知AN⊥平面PBM,PB平面PBM,∴AN⊥PB.
又∵AQ⊥PB,AN∩AQ=A,
∴PB⊥平面ANQ.又NQ平面ANQ.
∴PB⊥NQ.
练习册系列答案
相关题目