题目内容
已知数列{an}的前n项和为Sn,且满足Sn-Sn-1+2SnSn-1=0(n≥2),a1=.(1)求证:是等差数列;(2)求an的表达式.
(1)见解析(2)an=
解析
从数列中抽出一些项,依原来的顺序组成的新数列叫数列的一个子列.(1)写出数列的一个是等比数列的子列;(2)若是无穷等比数列,首项,公比且,则数列是否存在一个子列为无穷等差数列?若存在,写出该子列的通项公式;若不存在,证明你的结论.
已知等差数列{}的前n项和为Sn,公差d≠0,且S3=9,a1,a3,a7成等比数列.(1)求数列{}的通项公式;(2)设=,求数列{}的前n项和.
已知数列{an}前n项和为Sn,且a2an=S2+Sn对一切正整数都成立.(1)求a1,a2的值;(2)设a1>0,数列前n项和为Tn,当n为何值时,Tn最大?并求出最大值.
已知数列{an}中,a1=8,a4=2,且满足an+2+an=2an+1.(1)求数列{an}的通项公式;(2)设Sn是数列{|an|}的前n项和,求Sn.
设数列{an}满足a1=2,a2+a4=8,且对任意n∈N*,函数f(x)=(an-an+1+an+2)x+an+1cos x-an+2sin x满足f′=0.(1)求数列{an}的通项公式;(2)若bn=2(an+),求数列{bn}的前n项和Sn.
已知数列{an}的首项为a1=1,其前n项和为Sn,且对任意正整数n有n,an,Sn成等差数列.(1)求证:数列{Sn+n+2}成等比数列.(2)求数列{an}的通项公式.
已知首项为的等比数列{an}不是递减数列,其前n项和为Sn(n∈N*),且S3+a3,S5+a5,S4+a4成等差数列.(1)求数列{an}的通项公式;(2)设Tn=Sn-(n∈N*),求数列{Tn}的最大项的值与最小项的值.
已知数列an=求a1+a2+a3+a4+…+a99+a100的值.