题目内容
【题目】已知函数 ,若正实数a,b,c互不相等,且f(a)=f(b)=f(c),则a+b+c的取值范围为( )
A.(e,2e+e2)
B.
C.
D.
【答案】B
【解析】解:如图,画出函数 的图象, 设a<b<c,则|lna|=|lnb|,
即有lna+lnb=0,即有ab=1,
当x>e时,y=2﹣lnx递减,
且与x轴交于(e2 , 0),
∴e<c<e2 ,
可得 <a<1,
当a趋近于 时,b,c趋近于e;
当a趋近于1时,b趋近于e,c趋近于e2 ,
可得a+b+c的取值范围是( +2e,2+e2).
故选:B.
【考点精析】本题主要考查了函数的值的相关知识点,需要掌握函数值的求法:①配方法(二次或四次);②“判别式法”;③反函数法;④换元法;⑤不等式法;⑥函数的单调性法才能正确解答此题.
练习册系列答案
相关题目
【题目】据统计,截至2016年底全国微信注册用户数量已经突破9.27亿,为调查大学生这个微信用户群体中每人拥有微信群的数量,现从某市大学生中随机抽取100位同学进行了抽样调查,结果如下:
微信群数量(个) | 频数 | 频率 |
0~4 | 0.15 | |
5~8 | 40 | 0.4 |
9~12 | 25 | |
13~16 | a | c |
16以上 | 5 | b |
合计 | 100 | 1 |
(Ⅰ)求a,b,c的值及样本中微信群个数超过12的概率;
(Ⅱ)若从这100位同学中随机抽取2人,求这2人中恰有1人微信群个数超过12的概率;
(Ⅲ)以(1)中的频率作为概率,若从全市大学生中随机抽取3人,记X表示抽到的是微信群个数超过12的人数,求X的分布列和数学期望E(X).