题目内容
【题目】已知f(x)=ax3﹣xlnx,若x1、x2∈(0,+∞)且x1≠x2 , 不等式(x12﹣x22)(f(x1)﹣f(x2))>0恒成立,则实数a的取值范围是 .
【答案】
【解析】解:x1、x2∈(0,+∞)且x1≠x2 , 不等式(x12﹣x22)(f(x1)﹣f(x2))>0恒成立, >0,x1、x2∈(0,+∞)且x1≠x2 ,
∴函数f(x)在x∈(0,+∞)上单调递增.
∴f′(x)=3ax2﹣lnx﹣1≥0,在x∈(0,+∞)上恒成立.
即3a≥ =g(x),
g′(x)= = .
可知:x= 时,g(x)极大值即最大值,g( )= .
∴3a≥ ,解得a≥ .
∴实数a的取值范围是 .
所以答案是: .
【考点精析】本题主要考查了全称命题的相关知识点,需要掌握全称命题:,,它的否定:,;全称命题的否定是特称命题才能正确解答此题.
练习册系列答案
相关题目
【题目】有甲、乙两个班级进行数学考试,按照大于等于120分为优秀,120分以下为非优秀统计成绩后,得到如下2×2列联表:(单位:人).
优秀 | 非优秀 | 总计 | |
甲班 | 10 | ||
乙班 | 30 | ||
总计 | 105 |
已知在全部105人中随机抽取1人成绩是优秀的概率为 ,
(1)请完成上面的2 x×2列联表,并根据表中数据判断,是否有95%的把握认为“成绩与班级有关系”?
(2)若甲班优秀学生中有男生6名,女生4名,现从中随机选派3名学生参加全市数学竞赛,记参加竞赛的男生人数为X,求X的分布列与期望. 附:K2=
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.010 |
k | 2.072 | 2.706 | 3.841 | 6.635 |