题目内容
设函数![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013532895901.png)
(1)求
的单调区间;
(2)若关于
的方程
在区间
上有唯一实根,求实数
的取值范围.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013532895901.png)
(1)求
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013532911447.png)
(2)若关于
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013532911266.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013532942733.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013532973317.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013532989283.png)
(1)
的单调增区间是
单调递减区间是![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013533036498.png)
(2)![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240135330671044.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013532911447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013533020541.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013533036498.png)
(2)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240135330671044.png)
试题分析:(1)函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013532911447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013533098566.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240135331291368.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013533145476.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013533176575.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013533192374.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013533207565.png)
故
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013532911447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013533020541.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013533036498.png)
(2)由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013532942733.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013533301860.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013533332943.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013533348702.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013533363571.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013533395442.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013533426374.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013533441357.png)
要使方程
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013533473738.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013533488317.png)
则必须且只需
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013533504511.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013533535886.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013533551885.png)
解之得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013533566600.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013533582627.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240135330671044.png)
点评:中档题,在给定区间,导数非负,函数为增函数,导数非正,函数为减函数。涉及方程根的讨论问题,往往通过研究函数的单调性,最值等,明确函数图象的大致形态,确定出方程根的情况。
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目