题目内容
已知函数
.
(1)求
的单调区间;
(2)当
时,判断
和
的大小,并说明理由;
(3)求证:当
时,关于
的方程:
在区间
上总有两个不同的解.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013616248834.png)
(1)求
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013616264447.png)
(2)当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013616295423.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013616310478.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013616326426.png)
(3)求证:当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013616357430.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013616373266.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013616388979.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013616404428.png)
(1)
的单调递增区间为
,
,单调递减区间为![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013616498428.png)
(2)当
时,
.
(3)构造函数
,然后借助于
在区间
、
分别存在零点,又由二次函数的单调性可知最多在两个零点,进而得到结论。
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013616264447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013616451517.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013616466510.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013616498428.png)
(2)当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013616295423.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013616529644.png)
(3)构造函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013616544962.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013616576442.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013616591441.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013616607427.png)
试题分析:(1)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240136166381436.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013616654560.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013616685386.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013616700360.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013616732544.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013616747435.png)
所以函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013616264447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013616451517.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013616466510.png)
单调递减区间为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013616498428.png)
(2)当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013616841566.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013616264447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013616872497.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013616529644.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013616903620.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013616264447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013616934359.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013616950474.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013616981430.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013616997398.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013617012478.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013617044698.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013617059634.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013616903620.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013616529644.png)
综上可知:当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013616295423.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013616529644.png)
(3)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013617137967.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013617184780.png)
考虑函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013616544962.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240136172151390.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013617231897.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240136173561782.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013616576442.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013616591441.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013616607427.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013616576442.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013617434275.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013616388979.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013616404428.png)
点评:考查了导数在研究函数中的运用,以及利用函数与方程的思想的综合运用,属于难度题。
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目