题目内容
【题目】如图平面PAC⊥平面ABC, AC⊥BC,PE// BC,M,N分别是AE,AP的中点,且△PAC是边长为2的等边三角形,BC=3,PE =2.
(1)求证:MN⊥平面PAC;
(2)求平面PAE与平面ABC夹角的余弦值.
【答案】(1)证明见解析;(2).
【解析】
(1)由三角形中位线可得,由面面垂直性质定理可得平面,进而可得结果;
(2)取AC的中点F,连接PF,取AB的中点G,连接GF,以F为坐标原点,FC为x轴,FG为y轴建立空间直角坐标系,分别求出平面PAE与平面ABC的法向量,求出法向量的夹角即可得出结果.
(1)证明: 分别是的中点,
是的一条中位线,,
又,
平面平面,交线为AC,且,
平面,又,平面
(2)取AC的中点F,连接PF
为的等边三角形,
又平面平面,交线为AC
平面
取AB的中点G,连接GF
易知,又平面平面ABC
平面
故以F为坐标原点,FC为x轴,FG为y轴建立空间直角坐标系
则,A(-1,0,0),E(0,2,),,
设=(x,y,z)为平面PAE的一个法向量
则 ,
令,则x=-3,y=0, 所以
由平面知,为平面ABC的一个法向量
设平面PAE与平面ABC的夹角为
则
即平面PAE与平面夹角的余弦值为.
练习册系列答案
相关题目