题目内容
【题目】下列函数中,在其定义域上既是奇函数又是增函数的是( )
A.y=logax
B.y=x3+x
C.y=3x
D.y=﹣
【答案】B
【解析】解:对于A.则为对数函数,定义域为(0,+∞),则函数没有奇偶性,故A不满足条件;
对于B.定义域为R,f(﹣x)=﹣x3﹣x=﹣f(x),即有f(x)为奇函数,
又f′(x)=3x2+1>0,则f(x)在R上递增,故B满足条件;
对于C.则为指数函数,f(﹣x)≠﹣f(x),则不为奇函数,故C不满足条件;
对于D.则为反比例函数,定义域为(﹣∞,0)∪(0,+∞),f(﹣x)=﹣f(x),则f(x)为奇函数,
且在(﹣∞,0)和(0,+∞)均为增函数,故D不满足条件.
故选B.
【考点精析】认真审题,首先需要了解函数单调性的判断方法(单调性的判定法:①设x1,x2是所研究区间内任两个自变量,且x1<x2;②判定f(x1)与f(x2)的大小;③作差比较或作商比较),还要掌握函数的奇偶性(偶函数的图象关于y轴对称;奇函数的图象关于原点对称)的相关知识才是答题的关键.
练习册系列答案
相关题目