题目内容

【题目】已知: 是同一平面上的三个向量,其中 =(1,2).
(1)若| |=2 ,且 ,求 的坐标.
(2)若| |= ,且 +2 与2 垂直,求 的夹角θ

【答案】
(1)解:设

且| |=2

∴x=±2

=(2,4)或 =(﹣2,﹣4)


(2)解:∵( +2 )⊥(2

∴( +2 )(2 )=0

∴2 2+3 ﹣2 2=0

∴2| |2+3| || |cosθ﹣2| |2=0

∴2×5+3× × cosθ﹣2× =0

∴cosθ=﹣1

∴θ=π+2kπ

∵θ∈[0,π]

∴θ=π


【解析】(1)设出 的坐标,利用它与 平行以及它的模等于2 ,待定系数法求出 的坐标.(2)由 +2 与2 垂直,数量积等于0,求出夹角θ的余弦值,再利用夹角θ的范围,求出此角的大小.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网