题目内容

【题目】已知函数f(x)满足f(﹣x)=f(x),且f(x+2)=f(x)+f(2),当x∈[0,1]时,f(x)=x,那么在区间[﹣1,3]内,关于x的方程f(x)=kx+k+1(k∈R)且k≠﹣1恰有4个不同的根,则k的取值范围是

【答案】(- , 0)
【解析】解:∵当x∈[0,1]时,f(x)=x,∴f(0)=0,
∵f(﹣x)=f(x),且f(x+2)=f(x)+f(2),
∴函数y=f(x)为偶函数,
令x=﹣2,则f(﹣2+2)=f(﹣2)+f(2)=f(0)=0,
即2f(2)=0,则f(2)=0,
即f(x+2)=f(x)+f(2)=f(x),
即函数f(x)是周期为2的周期数列,
若x∈[﹣1,0],则﹣x∈[0,1]时,
此时f(﹣x)=﹣x=f(x),
∴f(x)=﹣x,x∈[﹣1,0],
令y=kx+k+1,则化为y=k(x+1)+1,即直线y=k(x+1)+1恒过M(﹣1,1).
作出f(x),x∈[﹣1,3]的图象与直线y=k(x+1)+1,
如图所示,由图象可知当直线介于直线MA与MB之间时,
关于x的方程f(x)=kx+k+1恰有4个不同的根,
又∵kMA=0,kMB=-
∴-<k<0.
所以答案是:(- , 0).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网