题目内容
【题目】已知椭圆的方程为,是椭圆上的一点,且在第一象限内,过且斜率等于-1的直线与椭圆交于另一点,点关于原点的对称点为.
(1)证明:直线的斜率为定值;
(2)求面积的最大值.
【答案】(1)证明见解析;(2).
【解析】
(1)利用点差法即可求证直线BD的斜率为定值;
(2)设直线BD的方程,由S△ABD=2S△OBD,将直线BD的方程代入椭圆方程,利用韦达定理及弦长公式及基本不等式即可求得△ABD面积的最大值.
(1)设,,则,直线的斜率,
由,两式相减,,
由直线,所以,
直线的斜率为定值.
(2)连结,∵,关于原点对称,所以,
由(1)可知的斜率,设方程为.
∵在第三象限,∴且,
到的距离,
由,整理得:,
∴,,
∴
,
.
∴当时,取得最大值.
【题目】2019年初,某市为了实现教育资源公平,办人民满意的教育,准备在今年8月份的小升初录取中在某重点中学实行分数和摇号相结合的录取办法.该市教育管理部门为了了解市民对该招生办法的赞同情况,随机采访了440名市民,将他们的意见和是否近三年家里有小升初学生的情况进行了统计,得到如下的2×2列联表.
赞同录取办法人数 | 不赞同录取办法人数 | 合计 | |
近三年家里没有小升初学生 | 180 | 40 | 220 |
近三年家里有小升初学生 | 140 | 80 | 220 |
合计 | 320 | 120 | 440 |
(1)根据上面的列联表判断,能否在犯错误的概率不超过0.001的前提下认为是否赞同小升初录取办法与近三年是否家里有小升初学生有关;
(2)从上述调查的不赞同小升初录取办法人员中根据近三年家里是否有小升初学生按分层抽样抽出6人,再从这6人中随机抽出3人进行电话回访,求3人中恰有1人近三年家里没有小升初学生的概率.
附:,其中.
P() | 0.10 | 0.05 | 0.025 | 0.10 | 0.005 | 0.001 |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |