题目内容
【题目】若<<0,则下列不等式:①<;②|a|+b>0;③a->b-;④lna2>lnb2中,正确的是( )
(A)①④ (B)②③ (C)①③ (D)②④
【答案】D
【解析】先由<<0得到a与b的大小关系,再根据不等式的性质,对各个不等式进行逐一判断.
由<<0,可知b<a<0.
①中,a+b<0,ab>0,所以<0,>0.
故有<,即①正确.
②中,∵b<a<0,∴-b>-a>0,故-b>|a|,即|a|+b<0,故②错误.
③中,∵b<a<0,即0>a>b,
又∵<<0,∴->->0,
∴a->b-,故③正确.
④中,∵b<a<0,根据y=x2在(-∞,0)上为单调递减函数,可得b2>a2>0,而y=lnx在定义域上为增函数.∴lnb2>lna2,故④错,综上分析,②④错误,①③正确.
练习册系列答案
相关题目
【题目】某学校为了了解学生使用手机的情况,分别在高一和高二两个年级各随机抽取了100名学生进行调查.下面是根据调查结果绘制的学生日均使用手机时间的频数分布表和频率分布直方图,将使用手机时间不低于80分钟的学生称为“手机迷”.
高一学生日均使用手机时间的频数分布表
时间分组 | 频数 |
[0,20) | 12 |
[20,40) | 20 |
[40,60) | 24 |
[60,80) | 18 |
[80,100) | 22 |
[100,120] | 4 |
(1)将频率视为概率,估计哪个年级的学生是“手机迷”的概率大?请说明理由.
(2)在高二的抽查中,已知随机抽到的女生共有55名,其中10名为“手机迷”.根据已知条件完成下面的2×2列联表,并据此资料你有多大的把握认为“手机迷”与性别有关?
非手机迷 | 手机迷 | 合计 | |
男 | |||
女 | |||
合计 |
附:随机变量(其中为样本总量).
参考数据 | 0.15 | 0.10 | 0.05 | 0.025 | |
2.072 | 2.706 | 3.841 | 5.024 |