题目内容

【题目】某地区2011年至2017年农村居民家庭人均纯收入y(单位:千元)的数据如下表:

年份

2011

2012

2013

2014

2015

2016

2017

年份代号t

1

2

3

4

5

6

7

人均纯收入y

2.9

3.3

3.6

4.4

4.8

5.2

5.9

(1)求样本中心点坐标;

(2)已知两变量线性相关,求y关于t的线性回归方程;

(3)利用(2)中的线性回归方程,分析2011年至2017年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2019年农村居民家庭人均纯收入.

附:回归直线的斜率和截距的最小二乘估计公式分别为:.

【答案】(1);(2)=0.5t+2.3;(3)见解析

【解析】

1)由表中数据计算 即可

(2)由所给数据计算出回归系数,写出回归方程即可;

3)由0.50y关于t正相关,求出t9的值即可.

(1)由所给数据计算得

(1+2+3+4+5+6+7)=4,

(2.9+3.3+3.6+4.4+4.8+5.2+5.9)=4.3,

所以样本中心点为 .

2=9+4+1+0+1+4+9=28,

=(-3)×(-1.4)+(-2)×(-1)+(-1)×(-0.7)+0×0.1+1×0.5+2×0.9+3×1.6=14,

=0.5,=4.3-0.5×4=2.3,

故所求线性回归方程为=0.5t+2.3.

(3)由(2)知,=0.5>0,故2011年至2017年该地区农村居民家庭人均纯收入逐年增加,平均每年增加0.5千元.将2019年的年份代号t=9代入(2)中的线性回归方程,得=0.5×9+2.3=6.8,故预测该地区2019年农村居民家庭人均纯收入为6.8千元.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网