题目内容
(本小题共14分)
如图,在中,,斜边.可以通过以直线为轴旋转得到,且二面角是直二面角.动点的斜边上.
(I)求证:平面平面;
(II)当为的中点时,求异面直线与所成角的大小;
(III)求与平面所成角的最大值.
如图,在中,,斜边.可以通过以直线为轴旋转得到,且二面角是直二面角.动点的斜边上.
(I)求证:平面平面;
(II)当为的中点时,求异面直线与所成角的大小;
(III)求与平面所成角的最大值.
(I)平面平面
(II)异面直线与所成角的大小为
(III)CD与平面所成角的最大值为
(II)异面直线与所成角的大小为
(III)CD与平面所成角的最大值为
解法一:
(I)由题意,,,
是二面角是直二面角,
又二面角是直二面角,
,又,
平面,
又平面.
平面平面.
(II)作,垂足为,连结(如图),则,
是异面直线与所成的角.
在中,,,
.
又.
在中,.
异面直线与所成角的大小为.
(III)由(I)知,平面,
是与平面所成的角,且.
当最小时,最大,
这时,,垂足为,,,
与平面所成角的最大值为.
解法二:
(I)同解法一.
(II)建立空间直角坐标系,如图,则,,,,
,,
.
异面直线与所成角的大小为.
(III)同解法一
(I)由题意,,,
是二面角是直二面角,
又二面角是直二面角,
,又,
平面,
又平面.
平面平面.
(II)作,垂足为,连结(如图),则,
是异面直线与所成的角.
在中,,,
.
又.
在中,.
异面直线与所成角的大小为.
(III)由(I)知,平面,
是与平面所成的角,且.
当最小时,最大,
这时,,垂足为,,,
与平面所成角的最大值为.
解法二:
(I)同解法一.
(II)建立空间直角坐标系,如图,则,,,,
,,
.
异面直线与所成角的大小为.
(III)同解法一
练习册系列答案
相关题目