ÌâÄ¿ÄÚÈÝ
14£®Ä³Ð£´Ó²Î¼Óij´Î֪ʶ¾ºÈüµÄͬѧÖУ¬Ñ¡È¡60Ãûͬѧ½«Æä³É¼¨£¨°Ù·ÖÖÆ£¬¾ùΪÕûÊý£©·Ö³É[40£¬50£©£¬[50£¬60£©£¬[60£¬70£©£¬[70£¬80£©£¬[80£¬90£©£¬[90£¬100]Áù×éºó£¬µÃµ½ÆµÂÊ·Ö²¼Ö±·½Í¼£¨Èçͼ£©£¬¹Û²ìͼÐÎÖеÄÐÅÏ¢£¬»Ø´ðÏÂÁÐÎÊÌ⣮£¨1£©´ÓƵÂÊ·Ö²¼Ö±·½Í¼ÖУ¬¹À¼Æ±¾´Î¿¼ÊԳɼ¨µÄÖÐλÊý£»
£¨2£©Èô´ÓµÚ1×éºÍµÚ6×éÁ½×éѧÉúÖУ¬Ëæ»ú³éÈ¡2ÈË£¬ÇóËù³éÈ¡2È˳ɼ¨Ö®²îµÄ¾ø¶ÔÖµ´óÓÚ10µÄ¸ÅÂÊ£®
·ÖÎö £¨1£©¸ù¾ÝƵÂÊ·Ö²¼Ö±·½Í¼£¬Çó³ö¸Ã×éÊý¾ÝµÄÖÐλÊý£»
£¨2£©Çó³öµÚ1×é¡¢µÚ6×éµÄƵÊý¸÷ÊǶàÉÙ£¬¼ÆËã¶ÔÓ¦µÄ»ù±¾Ê¼þÊý£¬Çó³ö¸ÅÂʼ´¿É£®
½â´ð ½â£º£¨1£©ÓÉƵÂÊ·Ö²¼Ö±·½Í¼Öª£¬
Ç°Èý×éµÄƵÂÊÖ®ºÍΪ0.1+0.15+0.15=0.4£¬
¡àÖÐλÊýÔÚµÚËÄ×飬
ÉèÖÐλÊýΪ70+x£¬
Ôò0.4+0.030x=0.5£¬
½âµÃx=$\frac{10}{3}$£¬
¡à¸Ã×éÊý¾ÝµÄÖÐλÊýΪ70+$\frac{10}{3}$=$\frac{220}{3}$£»
£¨2£©µÚ1×éµÄƵÊýΪ£º60¡Á0.1=6ÈË£¨ÉèΪ1£¬2£¬3£¬4£¬5£¬6£©£¬
µÚ6×éµÄƵÊýΪ£º60¡Á0.05=3ÈË£¨ÉèΪA£¬B£¬C£©£»
´ÓÕâ9ÈËÖÐÈÎÈ¡2ÈË£¬¹²ÓÐ${C}_{9}^{2}$=36¸ö»ù±¾Ê¼þ£¬
Âú×ã³éÈ¡2È˳ɼ¨Ö®²îµÄ¾ø¶ÔÖµ´óÓÚ10µÄ»ù±¾Ê¼þÓÐ${C}_{6}^{1}$¡Á${C}_{3}^{1}$=18¸ö£¬
ËùÒÔ£¬ËùÇóµÄ¸ÅÂÊΪP=$\frac{18}{36}$=$\frac{1}{2}$£®
µãÆÀ ±¾Ì⿼²éÁËƵÂÊ·Ö²¼Ö±·½Í¼µÄÓ¦ÓÃÎÊÌ⣬Ҳ¿¼²éÁËÇó¹Åµä¸ÅÐ͵ĸÅÂʵÄÓ¦ÓÃÎÊÌ⣬ÊÇ»ù´¡ÌâÄ¿£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
4£®ÒÑ֪˫ÇúÏß$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1µÄÁ½Ìõ½¥½üÏß·Ö±ðÓëÅ×ÎïÏßy2=4xµÄ×¼Ïß½»ÓÚA£¬B£¬ÇÒ¡÷AOBµÄÃæ»ýΪ$\sqrt{2}$£¬Ôò¸ÃË«ÇúÏßµÄÀëÐÄÂÊΪ£¨¡¡¡¡£©
A£® | 4 | B£® | $\sqrt{3}$ | C£® | 3 | D£® | 1 |
2£®Èçͼ£¬ÔÚ¸´Æ½ÃæÄÚ£¬ÒÑÖª¸´Êýz1¡¢z2¡¢z3£¬¶ÔÓ¦µÄÏòÁ¿·Ö±ðÊÇ$\overrightarrow{OA}$£¬$\overrightarrow{OB}$£¬$\overrightarrow{OC}$£¬£¨iÊÇÐéÊýµ¥Î»£©£¬ÒÑÖªz=$\frac{{z}_{1}•{z}_{2}}{{z}_{3}}$Ôò|$\overrightarrow{z}$+$\frac{\sqrt{11}}{2}$i|=£¨¡¡¡¡£©
A£® | 3 | B£® | $\sqrt{10+\sqrt{11}}$ | C£® | $\sqrt{6+\sqrt{11}}$ | D£® | $\frac{3}{2}$ |
9£®ÒÑ֪˫ÇúÏß$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1£¨a£¾0£¬b£¾0£©µÄÓÒ½¹µãµ½×󶥵ãµÄ¾àÀëµÈÓÚËüµ½½¥½üÏß¾àÀëµÄ2±¶£¬ÔòÆä½¥½üÏß·½³ÌΪ£¨¡¡¡¡£©
A£® | 2x¡Ày=0 | B£® | x¡À2y=0 | C£® | 4x¡À3y=0 | D£® | 3x¡À4y=0 |
19£®ÒÑÖª¼¯ºÏAΪ{0£¬4£¬5£¬6}£¬¼¯ºÏBΪ{3£¬6£¬7£¬5£¬9}£¬¼¯ºÏCΪ{0£¬5£¬9£¬4£¬7}£¬Ôò∁uA¡É£¨B¡ÈC£©Îª£¨¡¡¡¡£©
A£® | {3£¬7£¬9} | B£® | {0£¬3£¬7£¬9£¬4£¬5} | C£® | {5} | D£® | ∅ |
3£®Èô²»µÈʽ×é$\left\{\begin{array}{l}{|x|+|y|¡Ü3}\\{y+3¡Ük£¨x+1£©}\end{array}\right.$±íʾµÄƽÃæÇøÓòÊÇÈý½ÇÐΣ¬ÔòʵÊýkµÄÈ¡Öµ·¶Î§ÊÇ£¨¡¡¡¡£©
A£® | -$\frac{3}{2}$£¼k¡Ü$\frac{3}{4}$ | B£® | k£¼-$\frac{3}{2}$»òk¡Ý$\frac{3}{4}$ | C£® | -$\frac{3}{2}$£¼k£¼0»òk¡Ý$\frac{3}{4}$ | D£® | k£¼-$\frac{3}{2}$»ò0£¼k¡Ü$\frac{3}{4}$ |