题目内容
5.已知f(x)=$\left\{\begin{array}{l}(2a-1)x+4a,x<1\\-x+1,x≥1\end{array}$是定义在R上的减函数,则a的取值范围是( )A. | $[\frac{1}{6},\frac{1}{2})$ | B. | $[\frac{1}{3},\frac{1}{2}]$ | C. | $(\frac{1}{6},\frac{1}{2}]$ | D. | $[\frac{1}{3},\frac{1}{2}]$ |
分析 根据一次函数的单调性及减函数的定义便可得出$\left\{\begin{array}{l}{2a-1<0}\\{(2a-1)•1+4a≥-1+1}\end{array}\right.$,解该不等式组便可得出a的取值范围.
解答 解:f(x)为定义在R上的减函数;
∴$\left\{\begin{array}{l}{2a-1<0}\\{(2a-1)•1+4a≥-1+1}\end{array}\right.$;
解得$\frac{1}{6}≤a<\frac{1}{2}$;
∴a的取值范围为$[\frac{1}{6},\frac{1}{2})$.
故选:A.
点评 考查一次函数的单调性,以及减函数的定义,分段函数单调性的判断.
练习册系列答案
相关题目
15.下列结论正确的是( )
A. | 当x>0且x≠1时,lgx+$\frac{1}{lgx}≥2$ | |
B. | 当x$∈(0,\frac{π}{2}]$时,sinx+$\frac{4}{sinx}$的最小值为4 | |
C. | 当x>0时,$\sqrt{x}+\frac{1}{\sqrt{x}}$≥2 | |
D. | 当0<x≤2时,x-$\frac{1}{x}$无最大值 |