题目内容
【题目】已知函数,
;
若函数
在
上存在零点,求a的取值范围;
设函数
,
,当
时,若对任意的
,总存在
,使得
,求
的取值范围.
【答案】(1)(2)
【解析】
(1)在
单调递减且存在零点,根据零点存在定理可得:
,即可求得a的取值范围;
(2)对进行讨论,判断
的单调性,分别求出
,
在
的值域,令
的值域为
的值域的子集,列出不等式组,即可得出
的范围.
(1)的函数图像开口向上,对称轴为
在
上是减函数,
函数
在
上存在零点
根据零点存在定理可得: 即:
解得:
(2)时,
在
上单调递减,在
上单调递增
在
上的最小值为
,最大值为
即在
上的值域为
设在
上的值域为
对任意的,总存在
使得
①当时,
,
符合题意;
②当时,
在
上是增函数
,解得:
③当时,
在
上是减函数,
,解得:
综上所述:取值范围是
.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目
【题目】某电视台在一次对收看文艺节目和新闻节目观众的抽样调查中,随机抽取了100名电视观众,相关的数据如下表所示:
文艺节目 | 新闻节目 | 总计 | |
20至40岁 | 30 | 18 | 48 |
大于40岁 | 20 | 32 | 52 |
总计 | 50 | 50 | 100 |
(1)用分层抽样方法在收看文艺节目的观众中随机抽取5名,大于40岁的观众应该抽取几名?
(2)在上述抽取的5名观众中任取2名,求恰有1名观众的年龄为大于40岁的概率.