题目内容
【题目】已知函数且.
(Ⅰ)若函数在处取得极值,求实数的值.
(Ⅱ)若函数不存在零点,求实数的取值范围.
【答案】(I);
(II)
【解析】
(Ⅰ)求函数的导数,利用函数在处取得极值,则即,再检验函数在时,取得极小值,可得实数a的值;
(Ⅱ)若函数不存在零点,则函数的值恒大于或小于0,分类讨论a,利用函数的单调性,求得函数的最值,列出不等式,可得满足条件的实数a的取值范围.
解:(I)函数且,
其的定义域为R,
,
因为函数在处取得极值,
所以即,
经检验,当时,取得极小值,
故;
(Ⅱ),由于,
(i)当时,恒成立,
则是增函数,
且当时,,
当时,
解得,
取,则 ,
所以函数存在零点,
(ii)当时,由=0,得,
在上,,单调递减,
在上,,单调递增,
所以时,取得最小值,
函数不存在零点,等价于,
即,
解得,
综上所述:所求的实数a的取值范围是.
【题目】为了了解一个智力游戏是否与性别有关,从某地区抽取男女游戏玩家各200请客,其中游戏水平分为高级和非高级两种.
(1)根据题意完善下列列联表,并根据列联表判断是否有99%以上的把握认为智力游戏水平高低与性别有关?
性别 | 高级 | 非高级 | 合计 |
女 | 40 | ||
男 | 140 | ||
合计 |
(2)按照性别用分层抽样的方法从这些人中抽取10人,从这10人中抽取3人作为游戏参赛选手;
若甲入选了10人名单,求甲成为参赛选手的概率;
设抽取的3名选手中女生的人数为,求的分布列和期望.
附表:,其中.
0.010 | 0.05 | 0.001 | |
6.635 | 7.879 | 10.828 |
【题目】2019年国际篮联篮球世界杯,将于2019年在的北京、广州、南京、上海、武汉、深圳、佛山、东莞八座城市举行.为了宣传世界杯,某大学从全校学生中随机抽取了名学生,对是否收看篮球世界杯赛事的情况进行了问卷调查,统计数据如下:
会收看 | 不会收看 | |
男生 | 60 | 20 |
女生 | 20 | 20 |
(1)根据上表说明,能否有的把握认为收看篮球世界杯赛事与性别有关?
(2)现从参与问卷调查且收看篮球世界杯赛事的学生中,采用按性别分层抽样的方法选取人参加2019年国际篮联篮球世界杯赛志愿者宣传活动.
(i)求男、女学生各选取多少人;
(ii)若从这人中随机选取人到校广播站开展2019年国际篮联篮球世界杯赛宣传介绍,求恰好选到名男生的概率.
附:,其中.
【题目】2019年国际篮联篮球世界杯将于2019年8月31日至9月15日在中国的北京、广州、南京、上海、武汉、深圳、佛山、东莞八座城市举行.为了宣传国际篮联篮球世界杯,某大学从全校学生中随机抽取了120名学生,对是否会收看该国际篮联篮球世界杯赛事的情况进行了问卷调查,统计数据如下:
会收看 | 不会收看 | |
男生 | 60 | 20 |
女生 | 20 | 20 |
(1)根据上表说明,能否有99%的把握认为是否会收看该国际篮联篮球世界杯赛事与性别有关?
(2)甲、乙两个篮球运动员互不影响地在同一位置投球,命中率分别为与,且乙投球3次均未命中的概率为.
(i)求乙投球的命中率;
(ii)若甲投球1次,乙投球2次,两人共命中的次数记为,求的分布列和数学期望.
附:,其中,
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
【题目】3月底,我国新冠肺炎疫情得到有效防控,但海外确诊病例却持续暴增,防疫物资供不应求,某医疗器械厂开足马力,日夜生产防疫所需物品.已知该厂有两条不同生产线和生产同一种产品各10万件,为保证质量,现从各自生产的产品中分别随机抽取20件,进行品质鉴定,鉴定成绩的茎叶图如下所示:
该产品的质量评价标准规定:鉴定成绩达到的产品,质量等级为优秀;鉴定成绩达到的产品,质量等级为良好;鉴定成绩达到的产品,质量等级为合格.将这组数据的频率视为整批产品的概率.
(1)从等级为优秀的样本中随机抽取两件,记为来自机器生产的产品数量,写出的分布列,并求的数学期望;
(2)请完成下面质量等级与生产线产品列联表,并判断能不能在误差不超过0.05的情况下,认为产品等级是否达到良好以上与生产产品的生产线有关.
生产线的产品 | 生产线的产品 | 合计 | |
良好以上 | |||
合格 | |||
合计 |
附:
0.10 | 0.05 | 0.01 | 0.005 | |
2.706 | 3.841 | 6.635 | 7.879 |
【题目】为了解高中生作文成绩与课外阅读量之间的关系,某研究机构随机抽取了100名高中生,根据问卷调查,得到以下数据:
作文成绩优秀 | 作文成绩一般 | 总计 | |
课外阅读量较大 | 35 | 20 | 55 |
课外阅读量一般 | 15 | 30 | 45 |
总计 | 50 | 50 | 100 |
(1)根据列联表,能否有99.5%的把握认为课外阅读量的大小与作文成绩优秀有关;
(2)若用分层抽样的方式从课外阅读量一般的高中生中选取了6名高中生,再从这6名高中生中随机选取2名进行面谈,求面谈的高中生中至少有1名作文成绩优秀的概率.
附:,其中.
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
【题目】端午节(每年农历五月初五),是中国传统节日,有吃粽子的习俗.某超市在端午节这一天,每售出kg粽子获利润元,未售出的粽子每kg亏损元.根据历史资料,得到销售情况与市场需求量的频率分布表,如下表所示.该超市为今年的端午节预购进了kg粽子.以(单位:kg,)表示今年的市场需求量,(单位:元)表示今年的利润.
市场需求量(kg) | |||||
频率 | 0.1 | 0.2 | 0.3 | 0.25 | 0.15 |
(1)将表示为的函数;
(2)在频率分布表的市场需求量分组中,以各组的区间中间值代表该组的各个值,需求量落入该区间的频率作为需求量取该区间中间值的概率(例如:若需求量,则取,且的概率等于需求量落入的频率),求的数学期望.