题目内容
【题目】如图,平面分别是上的动点,且.
(1)若平面与平面的交线为,求证:;
(2)当平面平面时,求平面与平面所成的二面角的余弦值.
【答案】(1)见解析;(2)
【解析】
(1)首先由线面平行的判定定理可得平面,再由线面平行的性质定理即可得证;
(2)以点为坐标原点,,所在的直线分别为轴,以过点且垂直于的直线为轴建立空间直角坐标系,利用空间向量法求出二面角的余弦值;
解:(1)由,
又平面,平面,所以平面.
又平面,且平面平面,
故.
(2)因为平面,所以,又,所以平面,
所以,又,所以.
若平面平面,则平面,所以,
由且,
又,所以.
以点为坐标原点,,所在的直线分别为轴,以过点且垂直于的直线为轴建立空间直角坐标系,
则 ,,设
则
由,可得,,即,所以可得,所以,
设平面的一个法向量为,则
,,,取,得
所以
易知平面的法向量为,
设平面与平面所成的二面角为,
则,
结合图形可知平面与平面所成的二面角的余弦值为.
练习册系列答案
相关题目