题目内容
【题目】已知函数f(x)=e|x﹣a|(a为常数).若f(x)在区间[1,+∞)上是增函数,则a的取值范围是 .
【答案】(﹣∞,1]
【解析】解:因为函数f(x)=e|x﹣a|(a为常数).若f(x)在区间[1,+∞)上是增函数
由复合函数的单调性知,必有t=|x﹣a|在区间[1,+∞)上是增函数
又t=|x﹣a|在区间[a,+∞)上是增函数
所以[1,+∞)[a,+∞),故有a≤1
所以答案是(﹣∞,1]
练习册系列答案
相关题目
题目内容
【题目】已知函数f(x)=e|x﹣a|(a为常数).若f(x)在区间[1,+∞)上是增函数,则a的取值范围是 .
【答案】(﹣∞,1]
【解析】解:因为函数f(x)=e|x﹣a|(a为常数).若f(x)在区间[1,+∞)上是增函数
由复合函数的单调性知,必有t=|x﹣a|在区间[1,+∞)上是增函数
又t=|x﹣a|在区间[a,+∞)上是增函数
所以[1,+∞)[a,+∞),故有a≤1
所以答案是(﹣∞,1]