题目内容
【题目】已知函数,其中,,为的零点:且恒成立,在区间上有最小值无最大值,则的最大值是( )
A. 11B. 13C. 15D. 17
【答案】C
【解析】
先根据x为y=f(x)图象的对称轴,为f(x)的零点,判断ω为正奇数,再结合f(x)在区间上单调,求得ω的范围,对选项检验即可.
由题意知函数 为y=f(x)图象的对称轴,为f(x)的零点,∴,n∈Z,∴ω=2n+1.
f(x)在区间上有最小值无最大值,∴周期T≥(),即,∴ω≤16.
∴要求的最大值,结合选项,先检验ω=15,
当ω=15时,由题意可得15+φ=kπ,φ,函数为y=f(x)=sin(15x),
在区间上,15x∈(,),此时f(x)在时取得最小值,∴ω=15满足题意.
则ω的最大值为15,
故选:C.
练习册系列答案
相关题目
【题目】某电动汽车“行车数据”的两次记录如下表:
记录时间 | 累计里程 (单位:公里) | 平均耗电量(单位:公里) | 剩余续航里程 (单位:公里) |
2019年1月1日 | 4000 | 0.125 | 280 |
2019年1月2日 | 4100 | 0.126 | 146 |
(注:累计里程指汽车从出厂开始累计行驶的路程,累计耗电量指汽车从出厂开始累计消耗的电量,平均耗电量=,剩余续航里程=,下面对该车在两次记录时间段内行驶100公里的耗电量估计正确的是
A. 等于12.5B. 12.5到12.6之间
C. 等于12.6D. 大于12.6