题目内容

【题目】等比数列{an}的各项均为正数,且2a1+3a2=1,a32=9a2a6
(1)求数列{an}的通项公式;
(2)设bn=log3a1+log3a2+…+log3an , 求数列{ }的前n项和.

【答案】
(1)解:设数列{an}的公比为q,由a32=9a2a6得a32=9a42,所以q2=

由条件可知各项均为正数,故q=

由2a1+3a2=1得2a1+3a1q=1,所以a1=

故数列{an}的通项式为an=


(2)解:bn= + +…+ =﹣(1+2+…+n)=﹣

=﹣ =﹣2(

+ +…+ =﹣2[(1﹣ )+( )+…+( )]=﹣

所以数列{ }的前n项和为﹣


【解析】(1)设出等比数列的公比q,由a32=9a2a6 , 利用等比数列的通项公式化简后得到关于q的方程,由已知等比数列的各项都为正数,得到满足题意q的值,然后再根据等比数列的通项公式化简2a1+3a2=1,把求出的q的值代入即可求出等比数列的首项,根据首项和求出的公比q写出数列的通项公式即可;(2)把(1)求出数列{an}的通项公式代入设bn=log3a1+log3a2+…+log3an , 利用对数的运算性质及等差数列的前n项和的公式化简后,即可得到bn的通项公式,求出倒数即为 的通项公式,然后根据数列的通项公式列举出数列的各项,抵消后即可得到数列{ }的前n项和.
【考点精析】本题主要考查了等比数列的通项公式(及其变式)和数列的前n项和的相关知识点,需要掌握通项公式:;数列{an}的前n项和sn与通项an的关系才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网