题目内容
【题目】已知函数, .
(1)讨论函数的单调区间;
(2)若, 恒成立,求的取值范围.
【答案】(1)当时,函数在上单调递增;当时,函数的单调递增区间是,单调递减区间是;(2).
【解析】【试题分析】(1)依据题设条件运用导数与函数单调性之间的关系分类求解;(2)先将不等式进行等价转化,再构造函数借助导数知识及分类整合思想分析求解:
(1),
(ⅰ)当时, ,函数在上单调递增;
(ⅱ)当时,令,则,
当,即时,函数单调递增;
当,即时,函数单调递减.
综上,当时,函数在上单调递增;当时,函数的单调递增区间是,单调递减区间是.
(2)令,由(1)可知,函数的最小值为,所以,即.
恒成立与恒成立等价,
令,即,则,
①当时, (或令,则在上递增,∴,∴在上递增,∴,∴)
∴在区间上单调递增,
∴,
∴恒成立,
②当时,令,则,
当时, ,函数单调递增.
又, ,
∴存在,使得,故当时, ,即,故函数在上单调递减;当时, ,即,故函数在上单调递增.
∴,
即, 不恒成立,
综上所述, 的取值范围是.
【题目】某班同学利用国庆节进行社会实践,对[25,55]岁的人群随机抽取人进行了一次生活习惯是否符合低碳观念的调查,若生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳族”,得到如下统计表和各年龄段人数频率分布直方图:
组数 | 分组 | 低碳族的人数 | 占本组的频率 |
第一组 | [25,30) | 120 | 0.6 |
第二组 | [30,35) | 195 | |
第三组 | [35,40) | 100 | 0.5 |
第四组 | [40,45) | 0.4 | |
第五组 | [45,50) | 30 | 0.3 |
第六组 | [50,55] | 15 | 0.3 |
(1)补全频率分布直方图并求 的值;
(2)从年龄段在[40,50)的“低碳族”中采用分层抽样法抽取6人参加户外低碳体验活动,其中选取2人作为领队,求选取的2名领队中恰有1人年龄在[40,45)岁的概率.